Comenius project "In orbit with Europa"

Photometry with SalsaJ
Images of Victoria on November 3rd 2011 Telecope INO_AZ2

André Debackère, ASAM, collège de Monistrol sur Loire France
andre.debackere@free.fr

1) First have a look on this link :
http://resources.faulkes-telescope.com/mod/resource/view.php?id=946
Authors: Daniel Duggan \& Sarah Roberts
2) Loading Images

- First, launch SalsaJ

- Next, load your first image.

3) Photometry

Analyse>Photometry Settings. At the bottom of the new window, change the Star Radius to 6.

Next, go to Analyse>Photometry and another empty window will then appear.

Using the mouse, click on the standard star in your image. You will see a circle appear and in the new window a data entry is added.

In Excel (or other package) create two columns for Radius and Intensity then, add radius 6 and the intensity value from SalsaJ.

Now increase the radius in SalsaJ by 2 and measure the intensity of the same star again. Add the new data to your spreadsheet. Repeat this until you reach a radius of 20 , then start increasing the radius by 5 each time until you reach 40 .

You should have a set of results that looks like this:

Star radius	Star intensity
6	98878
8	193951
10	292034
12	410777
14	567027
16	731848
18	873779
20	985060
25	1116313
30	1149870
35	1159120
40	1162490

When you plot a graph of this data, you should get this:

We choose star radius $=25$

Next, go to Analyse>Photometry

Clic on the comparison star you ave choose on your first image. (1st image 10h06m10s UT), then clic on the asteroid Victoria.

- Next, load your second image. (2 ${ }^{\text {nd }}$ image $12 \mathrm{~h} 03 \mathrm{m03s}$ UT)

4) Calculations
$m=-2.5 \log (I)$
1st measure $\quad \mathrm{I} 1=2905136$ and $\mathrm{I} 2=926002$--> $\mathrm{m} 1=-16.16(\mathrm{R}=9.730)$--> cste $=25.89$
$m 2=-14.92$--> mag (R) Victoria $=10.97$ (10h06m06s UT)
$2^{\text {nd }}$ measure $I 3=2848776$ and $I 4=1189413-->m 3=-16.14(R=9.730)-->$ cste $=25.87$
$m 4=-15.19$--> mag (R) Victoria $=10.68$ (12h03m03s UT)
5) Using a standard star: Landolt G 9742
http://www.noao.edu/wiyn/queue/images/charts/c41.html
$V=12.443$
$V-R=1.171$
$R=12.443-1.171$
$R=11.272$

Number 1 : image Landolt star G9742 taken at 9h03m57s UT

I1 = 582788 --> mR = -14.41 (R=11.272) --> cste $=25.686$
Number 2 : image Victoria at 9h09m11s UT
$12=978842 \mathrm{~m} 2=-14.98-->\operatorname{mag}(\mathrm{R})$ Victoria $=10.71$ (9h09m11s UT)

Below the light curve of Victoria obtained with this method :

And the light curve obtained by Raoul Berhend (University of Geneva) from our datas :

(12) Victoria

